-25%

PORTABLE GENERATOR


Share With Friends

HOT SELLING STOCK

TSh4,500,000.0 TSh6,000,000.0

1. Minimal Dependencies & Pure Python

Use Python’s built-in modules to ensure compatibility across systems. Avoid third-party libraries.

Example: Portable Data Generator
Generate data without external packages:

python

Copy

Download

import os
import sys

def portable_data_generator(start, end):
    """Generate numbers and detect OS for logging."""
    current = start
    while current <= end:
        # Include OS info for cross-platform logging
        yield {
            "value": current,
            "os": sys.platform,  # e.g., 'win32', 'linux', 'darwin' (macOS)
            "path_separator": os.path.sep
        }
        current += 1

# Usage
for data in portable_data_generator(1, 3):
    print(data)
# Output:
# {'value': 1, 'os': 'linux', 'path_separator': '/'}
# {'value': 2, 'os': 'linux', 'path_separator': '/'}
# {'value': 3, 'os': 'linux', 'path_separator': '/'}

2. Cross-Platform File Handling

Read files safely on any OS using os and sys modules.

Example: Portable File Reader
Handle file paths and line endings consistently:

python

Copy

Download

import os

def portable_file_reader(file_path):
    """Read files with OS-agnostic paths and line endings."""
    with open(file_path, 'r', newline='') as file:
        for line in file:
            # Strip line endings and handle cross-platform newlines
            yield line.strip()

# Usage (works on Windows, Linux, macOS)
for line in portable_file_reader(os.path.join('data', 'example.txt')):
    print(line)

3. Self-Contained CSV Generator

Parse CSV files without external libraries (using Python’s csv module).

Example: CSV Data Generator

python

Copy

Download

import csv

def portable_csv_parser(file_path):
    with open(file_path, 'r') as file:
        reader = csv.reader(file)
        for row in reader:
            yield row

# Usage
for row in portable_csv_parser('data.csv'):
    print(row)  # Outputs each CSV row as a list

4. Environment-Aware Configuration

Use environment variables to make generators adaptable to different setups.

Example: Configurable Generator

python

Copy

Download

import os

def configurable_generator():
    max_items = int(os.environ.get("MAX_ITEMS", 10))  # Read from env or default
    for i in range(max_items):
        yield i

# Set env variable before running:
# export MAX_ITEMS=5 (Linux/macOS) or set MAX_ITEMS=5 (Windows)
for num in configurable_generator():
    print(num)  # Outputs 0-4 if MAX_ITEMS=5

5. Serialization for Data Transfer

Make generated data portable across systems using JSON or bytes.

Example: JSON-Serializable Generator

python

Copy

Download

import json

def json_serializable_generator(data_list):
    for item in data_list:
        yield json.dumps(item)  # Convert to JSON string

# Usage
data = [{'name': 'Alice'}, {'name': 'Bob'}]
for json_str in json_serializable_generator(data):
    parsed = json.loads(json_str)  # Rebuild data on another system
    print(parsed['name'])

Key Features of Portable Generators

  1. No External Dependencies: Only use Python’s standard library.

  2. OS Agnostic: Handle paths, line endings, and OS-specific logic safely.

  3. Configurable: Use environment variables or input parameters.

  4. Serializable Output: Generate data in formats like JSON, CSV, or bytes.

  5. Lightweight: Avoid large data structures or complex setups.


Use Case: Portable Data Pipeline

A generator that reads data, processes it, and writes results—designed to run anywhere:

python

Copy

Download

import os
import csv

def portable_pipeline(input_path, output_path):
    # Read
    with open(input_path, 'r') as infile:
        reader = csv.reader(infile)
        for row in reader:
            # Process (e.g., add a new column)
            processed_row = row + ["processed"]
            yield processed_row

    # Write (example: save to a new file)
    with open(output_path, 'w') as outfile:
        writer = csv.writer(outfile)
        for row in portable_pipeline('input.csv', 'output.csv'):
            writer.writerow(row)

Tips for Maximizing Portability

  1. Use Relative Paths: Avoid hardcoding absolute paths.

    python

    Copy

    Download

    import os
    current_dir = os.path.dirname(os.path.abspath(__file__))  # Script's directory
    file_path = os.path.join(current_dir, 'data.csv')
  2. Handle Encoding: Specify encodings (e.g., utf-8) for file operations.

  3. Test Across Platforms: Validate on Windows, Linux, and macOS.

  4. Package as a Module: Wrap generators in a .py file for easy reuse.


Example: Standalone Module

Save this as portable_gen.py and reuse across projects:

python

Copy

Download

# portable_gen.py
def fibonacci_sequence(max_items):
    a, b = 0, 1
    count = 0
    while count < max_items:
        yield a
        a, b = b, a + b
        count += 1

if __name__ == "__main__":
    # Demo when run directly
    for num in fibonacci_sequence(10):
        print(num)
Category:

SHOPPING CART

close